Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632264

RESUMO

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Exossomos/metabolismo , Complicações do Diabetes/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Resultado do Tratamento , Diabetes Mellitus/metabolismo
2.
Bone Res ; 12(1): 6, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267422

RESUMO

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Assuntos
Calosidades , Fraturas Ósseas , Idoso , Humanos , Animais , Camundongos , Consolidação da Fratura , Senescência Celular , Envelhecimento , Macrófagos , Células-Tronco
3.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395388

RESUMO

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/metabolismo , RNA/genética
4.
EMBO J ; 42(9): e111762, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36943004

RESUMO

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Camundongos , Animais , Osteogênese/genética , Envelhecimento/metabolismo , Senescência Celular , Diferenciação Celular/genética , Osteoporose/metabolismo , Células da Medula Óssea , Proteína 1 de Ligação a Y-Box/metabolismo
5.
Physiol Behav ; 254: 113887, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724927

RESUMO

Cerebral ischemia could induce depressive-like behaviors; however, the alteration of gamma-aminobutyric acid receptors type B (GABAB) receptors in these pathological processes has not been extensively investigated. The aim of the current study was to document the behavioral change and the alteration of GABAB receptors in chronic cerebral hypoperfusion. The permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) was performed to induce chronic cerebral ischemia (CCH). The depressive-like behaviors were evaluated with sucrose preference test, novelty suppress feeding test as well as forced swim test at 4, 8, and 12 weeks after the 2VO surgery. The total, surface and intracellular expressions of GABAB subunit 1 (GABAB1) and subunit 2 (GABAB2) in hippocampal CA1 were quantified by western blot. The depressive-like behaviors were observed in rats suffered from 4, 8, and 12 weeks 2VO in sucrose preference test, novelty suppress feeding test and forced swim test. In addition, the surface and total expression of GABAB1 in CA1 was reduced at 4 weeks after 2VO rather than 8 or 12 weeks. While the surface and total expression of GABAB2 in CA1 was decreased throughout the ischemia timeline (4, 8, and 12 weeks). Taken together, our findings suggested the potential roles of GABAB1 and GABAB2 subunits involved in depressive-like behaviors caused by chronic cerebral hypoperfusion.


Assuntos
Isquemia Encefálica , Região CA1 Hipocampal , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Ratos , Ratos Sprague-Dawley , Sacarose/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Cell Metab ; 34(8): 1168-1182.e6, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35705079

RESUMO

Exercise can prevent osteoporosis and improve immune function, but the mechanism remains unclear. Here, we show that exercise promotes reticulocalbin-2 secretion from the bone marrow macrophages to initiate bone marrow fat lipolysis. Given the crucial role of lipolysis in exercise-stimulated osteogenesis and lymphopoiesis, these findings suggest that reticulocalbin-2 is a pivotal regulator of a local adipose-osteogenic/immune axis. Mechanistically, reticulocalbin-2 binds to a functional receptor complex, which is composed of neuronilin-2 and integrin beta-1, to activate a cAMP-PKA signaling pathway that mobilizes bone marrow fat via lipolysis to fuel the differentiation and function of mesenchymal and hematopoietic stem cells. Notably, the administration of recombinant reticulocalbin-2 in tail-suspended and old mice remarkably decreases bone marrow fat accumulation and promotes osteogenesis and lymphopoiesis. These findings identify reticulocalbin-2 as a novel mechanosensitive lipolytic factor in maintaining energy homeostasis in bone resident cells, and it provides a promising target for skeletal and immune health.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Lipólise , Linfopoese , Células-Tronco Mesenquimais/metabolismo , Camundongos
7.
Cell Metab ; 33(10): 1957-1973.e6, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34614408

RESUMO

Skeletal aging is characterized by low bone turnover and marrow fat accumulation. However, the underlying mechanism for this imbalance is unclear. Here, we show that during aging in rats and mice proinflammatory and senescent subtypes of immune cells, including macrophages and neutrophils, accumulate in the bone marrow and secrete abundant grancalcin. The injection of recombinant grancalcin into young mice was sufficient to induce premature skeletal aging. In contrast, genetic deletion of Gca in neutrophils and macrophages delayed skeletal aging. Mechanistically, we found that grancalcin binds to the plexin-b2 receptor and partially inactivates its downstream signaling pathways, thus repressing osteogenesis and promoting adipogenesis of bone marrow mesenchymal stromal cells. Heterozygous genetic deletion of Plexnb2 in skeletal stem cells abrogated the improved bone phenotype of Gca-knockout mice. Finally, we developed a grancalcin-neutralizing antibody and showed that its treatment of older mice improved bone health. Together, our data suggest that grancalcin could be a potential target for the treatment of age-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Adipogenia , Envelhecimento , Animais , Medula Óssea , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Ratos
8.
Lancet Reg Health West Pac ; 16: 100268, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34568854

RESUMO

BACKGROUND: Non pharmaceutical interventions (NPI) including hand washing directives were implemented in China and worldwide to combat the COVID-19 pandemic, which are likely to have had impacted a broad spectrum of enteric pathogen infections. METHODS: Etiologically diagnostic data from 45 937 and 67 395 patients with acute diarrhea between 2012 and 2020, who were tested for seven viral pathogens and 13 bacteria respectively, were analyzed to assess the changes of enteric pathogen infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. FINDINGS: Test positive rates of all enteric viruses decreased during 2020, compared to the average levels during 2012-2019, with a relative decrease of 71•75% for adenovirus, 58•76% for norovirus, 53•50% for rotavirus A, and 72•07% for the combination of other four uncommon viruses. In general, a larger reduction of positive rate in viruses was seen among adults than pediatric patients. A rebound of rotavirus A was seen after September 2020 in North China rather than South China. Test positive rates of bacteria decreased during 2020, compared to the average levels during 2012-2019, excepting for nontyphoidal Salmonella and Campylobacter coli with 66•53% and 90•48% increase respectively. This increase was larger for pediatric patients than for adult patients. INTERPRETATION: The activity of enteric pathogens changed profoundly alongside the NPIs implemented during the COVID-19 pandemic in China. Greater reductions of the test positive rates were found for almost all enteric viruses than for bacteria among acute diarrhea patients, with further large differences by age and geography. Lifting of NPIs will lead to resurgence of enteric pathogen infections, particularly in children whose immunity may not have been developed and/or waned. FUNDING: China Mega-Project on Infectious Disease Prevention; National Natural Science Funds.

9.
Cell Prolif ; 53(3): e12784, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32080957

RESUMO

OBJECTIVES: CD31hi EMCNhi vessels (CD31, also known as PECAM1 [platelet and endothelial cell adhesion molecule 1]; EMCN, endomucin), which are strongly positive for CD31 and endomucin, couple angiogenesis and osteogenesis. However, the role of CD31hi EMCNhi vessels in bone regeneration remains unknown. In the present study, we investigated the role of CD31hi EMCNhi vessels in the process of bone regeneration. MATERIALS AND METHODS: We used endothelial-specific Krüppel like factor 3 (Klf3) knockout mice and ophiopogonin D treatment to interfere with CD31hi EMCNhi vessel formation. We constructed a bone regeneration model by surgical ablation of the trabecular bone. Immunofluorescence and micro-computed tomography (CT) were used to detect CD31hi EMCNhi vessels and bone formation. RESULTS: CD31hi EMCNhi vessels participate in the process of bone regeneration, such that endothelial-specific Klf3 knockout mice showed increased CD31hi EMCNhi vessels and osteoprogenitors in the bone regeneration area, and further accelerated bone formation. We also demonstrated that the natural compound, ophiopogonin D, acts as a KLF3 inhibitor to promote vessels formation both in vitro and in vivo. Administration of ophiopogonin D increased the abundance of CD31hi Emcnhi vessels and accelerated bone healing. CONCLUSIONS: Our findings confirmed the important role of CD31hi Emcnhi vessels in bone regeneration and provided a new target to treat bone fracture or promote bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Saponinas/farmacologia , Sialoglicoproteínas/metabolismo , Espirostanos/farmacologia , Animais , Células Cultivadas , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/efeitos dos fármacos
10.
Cell Metab ; 31(3): 534-548.e5, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32004475

RESUMO

Age-dependent loss of hypothalamic neural stem cells (htNSCs) is important for the pathological consequences of aging; however, it is unclear what drives the senescence of htNSCs. Here, we report that a long non-coding RNA, Hnscr, is abundantly expressed in the htNSCs of young mice but decreases markedly in middle-aged mice. We show that depletion of Hnscr is sufficient to drive the senescence of htNSCs and aging-like phenotypes in mice. Mechanistically, Hnscr binds to Y-box protein 1 (YB-1) to prevent its degradation and thus the attenuation of transcription of the senescence marker gene p16INK4A. Through molecular docking, we discovered that a naturally occurring small compound, theaflavin 3-gallate, can mimic the activity of Hnscr. Treatment of middle-aged mice with theaflavin 3-gallate reduced the senescence of htNSCs while improving aging-associated pathology. These results point to a mediator of the aging process and one that can be pharmacologically targeted to improve aging-related outcomes.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Hipotálamo/citologia , Células-Tronco Neurais/citologia , Animais , Biflavonoides/química , Biflavonoides/farmacologia , Catequina/química , Catequina/farmacologia , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Fenótipo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
11.
J Exp Med ; 216(8): 1944-1964, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31196982

RESUMO

High bone mass (HBM) is usually caused by gene mutations, and its mechanism remains unclear. In the present study, we identified a novel mutation in the long noncoding RNA Reg1cp that is associated with HBM. Subsequent analysis in 1,465 Chinese subjects revealed that heterozygous Reg1cp individuals had higher bone density compared with subjects with WT Reg1cp Mutant Reg1cp increased the formation of the CD31hiEmcnhi endothelium in the bone marrow, which stimulated angiogenesis during osteogenesis. Mechanistically, mutant Reg1cp directly binds to Krüppel-like factor 3 (KLF3) to inhibit its activity. Mice depleted of Klf3 in endothelial cells showed a high abundance of CD31hiEmcnhi vessels and increased bone mass. Notably, we identified a natural compound, Ophiopogonin D, which functions as a KLF3 inhibitor. Administration of Ophiopogonin D increased the abundance of CD31hiEmcnhi vessels and bone formation. Our findings revealed a specific mutation in lncRNA Reg1cp that is involved in the pathogenesis of HBM and provides a new target to treat osteoporosis.


Assuntos
Hiperostose Cortical Congênita/genética , Hiperostose Cortical Congênita/metabolismo , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Mutação , Osteopetrose/genética , Osteopetrose/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Densidade Óssea/genética , China , Estudos de Coortes , Células Progenitoras Endoteliais/metabolismo , Feminino , Heterozigoto , Humanos , Hiperostose Cortical Congênita/sangue , Hiperostose Cortical Congênita/patologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Fisiológica/genética , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteopetrose/sangue , Osteopetrose/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Saponinas/administração & dosagem , Saponinas/farmacologia , Sialoglicoproteínas/metabolismo , Espirostanos/administração & dosagem , Espirostanos/farmacologia , Adulto Jovem
12.
J Clin Invest ; 128(12): 5251-5266, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352426

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-related lineage switch between osteogenic and adipogenic fates, which contributes to bone loss and adiposity. Here we identified a long noncoding RNA, Bmncr, which regulated the fate of BMSCs during aging. Mice depleted of Bmncr (Bmncr-KO) showed decreased bone mass and increased bone marrow adiposity, whereas transgenic overexpression of Bmncr (Bmncr-Tg) alleviated bone loss and bone marrow fat accumulation. Bmncr regulated the osteogenic niche of BMSCs by maintaining extracellular matrix protein fibromodulin (FMOD) and activation of the BMP2 pathway. Bmncr affected local 3D chromatin structure and transcription of Fmod. The absence of Fmod modified the bone phenotype of Bmncr-Tg mice. Further analysis revealed that Bmncr would serve as a scaffold to facilitate the interaction of TAZ and ABL, and thus facilitate the assembly of the TAZ and RUNX2/PPARG transcriptional complex, promoting osteogenesis and inhibiting adipogenesis. Adeno-associated viral-mediated overexpression of Taz in osteoprogenitors alleviated bone loss and marrow fat accumulation in Bmncr-KO mice. Furthermore, restoring BMNCR levels in human BMSCs reversed the age-related switch between osteoblast and adipocyte differentiation. Our findings indicate that Bmncr is a key regulator of the age-related osteogenic niche alteration and cell fate switch of BMSCs.


Assuntos
Envelhecimento/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/metabolismo , Esqueleto/crescimento & desenvolvimento , Adipócitos/metabolismo , Adipogenia/genética , Adiposidade/genética , Envelhecimento/genética , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Fibromodulina/genética , Fibromodulina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Esqueleto/metabolismo
13.
Front Plant Sci ; 9: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563921

RESUMO

Although many members encoding different ammonium- and nitrate-transporters (AMTs, NRTs) were identified and functionally characterized from several plant species, little is known about molecular components for [Formula: see text]- and [Formula: see text] acquisition/transport in tobacco, which is often used as a plant model for biological studies besides its agricultural and industrial interest. We reported here the first molecular identification in tobacco (Nicotiana tabacum) of nine AMTs and four NRTs, which are respectively divided into four (AMT1/2/3/4) and two (NRT1/2) clusters and whose functionalities were preliminarily evidenced by heterologous functional-complementation in yeast or Arabidopsis. Tissue-specific transcriptional profiling by qPCR revealed that NtAMT1.1/NRT1.1 mRNA occurred widely in leaves, flower organs and roots; only NtAMT1.1/1.3/2.1NRT1.2/2.2 were strongly transcribed in the aged leaves, implying their dominant roles in N-remobilization from source/senescent tissues. N-dependent expression analysis showed a marked upregulation of NtAMT1.1 in the roots by N-starvation and resupply with N including [Formula: see text], suggesting a predominant action of NtAMT1.1 in [Formula: see text] uptake/transport whenever required. The obvious leaf-expression of other NtAMTs e.g., AMT1.2 responsive to N indicates a major place, where they may play transport roles associated with plant N-status and ([Formula: see text]-)N movement within aerial-parts. The preferentially root-specific transcription of NtNRT1.1/1.2/2.1 responsive to N argues their importance for root [Formula: see text] uptake and even sensing in root systems. Moreover, of all NtAMTs/NRTs, only NtAMT1.1/NRT1.1/1.2 showed their root-expression alteration in a typical diurnal-oscillation pattern, reflecting likely their significant roles in root N-acquisition regulated by internal N-demand influenced by diurnal-dependent assimilation and translocation of carbohydrates from shoots. This suggestion could be supported at least in part by sucrose- and MSX-affected transcriptional-regulation of NtNRT1.1/1.2. Thus, present data provide valuable molecular bases for the existence of AMTs/NRTs in tobacco, promoting a deeper understanding of their biological functions.

14.
Plant Sci ; 264: 102-111, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969790

RESUMO

Although biological functions of ammonium (NH4+) transporters (AMTs) have been intensively studied in many plant species, little is known about molecular bases responsible for NH4+ movement in tobacco. Here, we reported the identification and functional characterization of a putative NH4+ transporter NtAMT1.3 from tobacco (Nicotiana tabacum). Analysis in silico showed that NtAMT1.3 encoded an integral membrane protein containing 464 amino acid residues and exhibiting 10 predicted transmembrane α-helices. Heterologous functionality study demonstrated that NtAMT1.3 expression facilitated NH4+ entry across plasma membrane of NH4+-uptake defective yeast and Arabidopsis qko mutant, allowing a restored growth of both yeast and Arabidopsis mutant on low NH4+. qPCR assay revealed that NtAMT1.3 was expressed in both roots and leaves and significantly up-regulated by nitrogen starvation and resupply of its putative substrate NH4+ and even nitrate, suggesting that NtAMT1.3 should represent a nitrogen-responsive gene. Critically, constitutive overexpression of NtAMT1.3 in tobacco per se improved obviously the growth of transgenic plants on NH4+ and enhanced leaf nitrogen (15% more) accumulation, consistent with observation of 35% more NH4+ uptake by the roots of transgenic lines in 20min root-influx test. Together with data showing its plasma membrane localization and saturated transport nature with Km of about 50µM for NH4+, we suggest that NtAMT1.3 acts an active NH4+ transporter that plays a significant role in NH4+ acquisition and utilization in tobacco.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Teste de Complementação Genética , Mutação , Nitratos/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia , Regulação para Cima
15.
Nat Commun ; 8: 16003, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685750

RESUMO

A specific bone vessel subtype, strongly positive for CD31 and endomucin (CD31hiEmcnhi), is identified as coupling angiogenesis and osteogenesis. The abundance of type CD31hiEmcnhi vessels decrease during ageing. Here we show that expression of the miR-497∼195 cluster is high in CD31hiEmcnhi endothelium but gradually decreases during ageing. Mice with depletion of miR-497∼195 in endothelial cells show fewer CD31hiEmcnhi vessels and lower bone mass. Conversely, transgenic overexpression of miR-497∼195 in murine endothelium alleviates age-related reduction of type CD31hiEmcnhi vessels and bone loss. miR-497∼195 cluster maintains the endothelial Notch activity and HIF-1α stability via targeting F-box and WD-40 domain protein (Fbxw7) and Prolyl 4-hydroxylase possessing a transmembrane domain (P4HTM) respectively. Notably, endothelialium-specific activation of miR-195 by intravenous injection of aptamer-agomiR-195 stimulates CD31hiEmcnhi vessel and bone formation in aged mice. Together, our study indicates that miR-497∼195 regulates angiogenesis coupled with osteogenesis and may represent a potential therapeutic target for age-related osteoporosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Osteoporose/terapia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Receptor Notch1/genética , Sialoglicoproteínas/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Densidade Óssea , Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Neovascularização Fisiológica/genética , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/agonistas , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Receptor Notch1/metabolismo , Sialoglicoproteínas/agonistas , Sialoglicoproteínas/metabolismo , Transdução de Sinais
16.
Calcif Tissue Int ; 99(5): 500-509, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27395058

RESUMO

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß superfamily. Recent studies confirmed that GDF11 plays an important role in regulating the regeneration of brain, skeletal muscle, and heart during aging; however, its role in bone metabolism remains unclear. Thus, the aim of this study was to determine the effects of GDF11 on bone metabolism, including bone formation and bone resorption, both in vitro and in vivo. Our results showed that GDF11 inhibited osteoblastic differentiation of bone marrow mesenchymal stem cells in vitro. Mechanistically, GDF11 repressed Runx2 expression by inducing SMAD2/3 phosphorylation during osteoblast differentiation. Moreover, intraperitoneal injection of GDF11 inhibited bone formation and accelerated age-related bone loss in mice. Our results also showed that GDF11 had no effect on osteoclast differentiation or bone resorption both in vitro and in vivo. These results provide a further rationale for the therapeutic targeting of GDF11 for the treatment of age-related osteoporosis.


Assuntos
Células da Medula Óssea/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/fisiologia , Feminino , Fatores de Diferenciação de Crescimento/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
17.
Sci Rep ; 5: 14474, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412641

RESUMO

GABA receptors play an important role in ischemic brain injury. Studies have indicated that autophagy is closely related to neurodegenerative diseases. However, during chronic cerebral hypoperfusion, the changes of autophagy in the hippocampal CA1 area, the correlation between GABA receptors and autophagy, and their influences on hippocampal neuronal apoptosis have not been well established. Here, we found that chronic cerebral hypoperfusion resulted in rat hippocampal atrophy, neuronal apoptosis, enhancement and redistribution of autophagy, down-regulation of Bcl-2/Bax ratio, elevation of cleaved caspase-3 levels, reduction of surface expression of GABAA receptor α1 subunit and an increase in surface and mitochondrial expression of connexin 43 (CX43) and CX36. Chronic administration of GABAB receptors agonist baclofen significantly alleviated neuronal damage. Meanwhile, baclofen could up-regulate the ratio of Bcl-2/Bax and increase the activation of Akt, GSK-3ß and ERK which suppressed cytodestructive autophagy. The study also provided evidence that baclofen could attenuate the decrease in surface expression of GABAA receptor α1 subunit, and down-regulate surface and mitochondrial expression of CX43 and CX36, which might enhance protective autophagy. The current findings suggested that, under chronic cerebral hypoperfusion, the effects of GABAB receptors activation on autophagy regulation could reverse neuronal damage.


Assuntos
Baclofeno/farmacologia , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Caspase 3/metabolismo , Membrana Celular/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Mitocôndrias/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteína delta-2 de Junções Comunicantes
18.
J Clin Invest ; 125(4): 1509-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751060

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.


Assuntos
Adipócitos/citologia , Envelhecimento/genética , Células da Medula Óssea/citologia , MicroRNAs/fisiologia , Osteoblastos/citologia , Osteogênese/fisiologia , Osteoporose/prevenção & controle , Regiões 3' não Traduzidas/genética , Tecido Adiposo/citologia , Envelhecimento/metabolismo , Animais , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Densidade Óssea/genética , Densidade Óssea/fisiologia , Células da Medula Óssea/metabolismo , Remodelação Óssea/fisiologia , Proteínas de Transporte/antagonistas & inibidores , Diferenciação Celular/genética , Histona Desacetilases , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/análise , MicroRNAs/genética , Dados de Sequência Molecular , Osteocalcina/análise , Osteogênese/genética , Osteoporose/genética , Osteoporose/fisiopatologia , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas Repressoras/antagonistas & inibidores , Fator de Transcrição Sp7 , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA